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Modeling of radiative heat transfer and mass transfer in drop-flow-based heat exchangers for spacecraft is 

considered. A Monte Carlo-based numerical model is presented. Results obtained with the aid of the model 

are analyzed and compared with existing data. 

A cooling system should be organized on board a spacecraft to provide dissipation of heat into open space 

in the operation of energy sources and consumers. As applied to rather powerful energy installations (Nel > 50 

kW), use of systems with direct contact of the coolant with space (in particular, drop coolers/radiators) is 

appropriate. Drop coolers/radiators have substantially smaller weight and dimensions than heat exchangers 

fabricated using standard technologies, since they have a better developed heat-exchange surface, which, in 

addition, need not be armored (armoring is used to protect channels filled with the coolant from possible destruction 

by micrometeorites). 

To provide a practical solution to the problem of the development of the new type of cooler/radiator, reliable 

data are required that  would make it possible to predict heat transfer processes, generation, motion, and  

accumulation of drops under conditions of zero gravity and high vacuum. 

In simulation of radiative heat transfer, the model based on a discrete presentation of the drop layer is 

closest to a realistic description of the processes. This makes it possible to evaluate the temperature of any drop 

located at an arbitrary point of the drop layer. The use of methods of geometrical optics and the scalar Mie theory 

combined with Monte Carlo simulation makes it possible to make the most comprehensive allowance for absorption 

and scattering phenomena taking place in the drop layer. In addition, this approach is acceptable in modeling heat 

transfer and evaluating mass losses of the coolant due to evaporation. 

In this work, we present results of developing mathematical models of heat and mass transfer processes 

and choosing the main parameters of a drop cooler/radiator unit. 

1. An approximate analysis of the radiative cooling of a drop layer has been presented in [1 ]. A 

homogeneous distribution of the temperature over the layer thickness was assumed. The main advantage of this 

method consists in the fact that results can be obtained analytically. However, this method can be applied only to 

optically thin layers (T _ 1, where • = Ce.Trr2nD), when the radiation emitted by the drops leaves the layer almost 

entirely. It should be noted that Ce, as well as T, is a dimensionless quantity. When the optical thickness of the 

layers increases, calculations based on the method of [1 ] lead to underestimated layer cooling times. 

In the case of an optically thick layer (r >> 1) the temperature distribution and the intensity of the radiation 

source become inhomogeneous and time-dependent due to substantial screening. To take into account the 

temperature inhomogeneity, a method of two-dimensional calculation of the parameters of a flat drop layer has 

been proposed in [2 ]. In this case a homogeneous model of the drop layer is considered, which is a drawback of 

this method. This precludes the possibility of evaluating the actual temperature of drops located at the very edges 

of the layer, especially at peripheral corner zones. 
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Fig. 1. Basic geometric model of a drop layer. 

In [3, 4 ], methods making it possible to calculate the temperature of individual drops located at an arbi t rary 

point of the drop layer have been presented. In these cases, geometrical models of the drop layer that consist of 

cells bounded by mutually perpendicular planes each of which contains a fixed number of drops are used. Thus, 

in [3 ] drops are situated on a straight line, and in [4 ] drops can be arranged arbitrarily, which makes it possible 

to evaluate the temperature of drops located at the periphery of a layer by setting corresponding boundary 

conditions on the bounding planes. Here complications arise when evaluating angular coefficients of radiative 

transfer between drops. The use of conventional methods is connected with explicit or inexplicit integration over 

surface areas, which is rather difficult. 

The method of calculation of radiative heat transfer from a drop layer in vacuum considered in what follows 

describes heat transfer in a three-dimensional formulation and modeling of scattering of thermal energy within the 

layer with account for the indicatrix of scattering on spherical particles. 

2. Let us consider the thermal radiation of a rectangular drop layer in vacuum (Fig. 1). The  layer consists 

of identical moving spherical drops of radius r and concentration n. The layer dimensions along the x, y, and z 

axes are Y, D, and L, respectively. The drops move along the z axis at a velocity u and are assumed to be distributed 

in a uniform manner within the layer. To carry out the numerical modeling, the layer is divided into rectangular 

cells with dimensions Ax, Ay, and Az. 

Due to the small size of the cells, the drops within a cell are considered to have the same temperature. 

Their initial temperature in the first layer along the z axis (at the exit of the drop generator) equals To. External 

heat supply (from the sun or other sources) is absent; however, if necessary, it can be taken into account by 

introducing corresponding source terms into the heat balance equation. The  drops are assumed to emit 

monochromatic radiation. The wavelength at which the surface density of the monochromatic radiation flow reaches 

its maximum will be taken as the wavelength for which all optical parameters are evaluated. In the case of a 

blackbody it can be calculated by Wien's displacement law: 

(,~T)max q = 2897.6 Lum'Kl or A = 2897 .6 /T  lffm].  

Here T is the temperature of the drops for which the wavelength is evaluated. It can be assumed that T = To. 

Knowning the drop radius r, the drop material, and the radiation wavelength ,;t, one can find the quantities 

Cs, Ca, and Ce = Ca + Cs for a single drop. These cross sections are determined by means of the scalar Mie 

diffraction theory [5 ], which permits consideration of both transparent and opaque drops, which makes it possible 

to take scattering and absorption into account more completely. In evaluating the cross sections, the complex-valued 

refractive index of the droplet material R = Rr + Rii is used, where R r is the real part of the refractive index, which 

determines the refraction itself (Snell's law), and Ri is the imaginary part of the refractive index, reflecting the 

degree of attenuation of the incident electromagnetic radiation (degree of absorption). Among possible droplet 

materials we considered Sn, Li, VM-I and VM-4 grade vacuum oils, and PMS-type silicone liquids. 
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Fig. 2. Temperature field in a drop layer: 1) data from the present work, 2) 

[21. 

For metals, in the case of long wavelengths (in particular, infrared radiation) one can obtain [6 ] R r = R i 

= ,taO/C, where a 0 is the conductivity of the metal and c is the speed of light. This formula has been verified for 

infrared radiation and yielded rather accurate results for 2 > 5/~m. The energy balance in the cell with indices i, 

j, k, where k is the number of the cell layer along z, j is the number of the cell row along y, and i is the number 

of the cell row along x, is determined in the following manner. During the time interval At  = A z / u  all drops from 

the cell i, j, k move to the cell i, k, k + l  (see Fig. 1). It should be noted here that all cells are assumed to have the 

same dimensions. During the same time interval At the drops from the cell i, j, k emit the energy 

Eij k = nAzA  yAx  4:rrEe~ tTT4kAt, 

where e~ is the degree of blackness of the drop surface, which can be defined as e~ = Ca :7rr 2 or, in terms of the 

efficiency coefficients Qa = Ca/:rr2, Qe = Ce/:rr2, and Qs = Cs/~zr2, as e,~ = Qa, t;r is the Stefan-Bol tzmann constant, 

and Ti] k is the temperature of the drops in the cell ilk. It is also assumed that the energy of all cells in the k-th 

layer is scattered only within this k-th layer and exits to the environment (vacuum), and the faces of the k- th  layer 

separating this the layer from the k - l - t h  and k+ l- th cell layers are specularly reflecting. This assumption is 

substantiated because the temperature gradient along the z direction is substantially smaller than those along x 

and y. Thus, one can assume that the layers k and k - 1  or k and k+ 1 exchange approximately equal portions of 

energy during the time interval At. At the same time, a rather substantial portion of energy is transferred through 

boundaries of the k-th cell layer to the surrounding space without compensation from outside. 

It is assumed that the energy Ei/k is emitted along N random directions, with the energy E i i k / N  emitted 

along each of the directions. This formulation makes it possible to use the Monte Carlo method. A model 

pseudoparticle whose motion in the drop layer takes place with scattering and absorption obeying the Mie law is 

assumed to be the energy carrier. It is known [5 ] that this law determines the coefficients of absorption and 

scattering of electromagnetic radiation by a sphere, as well as the scattering indicatrices for an arbitrary spherical 

particle. The pseudoparticles moving from the cell ilk can be scattered repeatedly on drops, followed by absorption 

in a cell of the k- th  layer or exit.to the surrounding space at the end of its trajectory. In the case of absorption, 

the energy carr ied by the pseudoparticle is added to the thermal energy of the absorbing cell. When the 

pseudoparticle exits into the surrounding space, the drop layer loses the corresponding energy. 

The above-described operation is repeated for all N pseudoparticles of the ceil ij and for all cells ij of the 

k-th layer. When this procedure is completed, the thermal balance of each cell ij is 

4 / 3  n A x A y A z  :rrapcp (Tij k - Tijk+l) = Eij - Ai j ,  

where p and cp are the density and specific heat of the particle material, Aiy is the amount of energy introduced 

into the cell ij from neighboring cells due to absorption by pseudoparticles. As a result of solving this equation, the 

temperature Tijk+ 1 of the cell ij in the layer k + l  is determined. The calculation is repeated until the layer kmax 

(the layer in the vicinity of the drop collector) is reached. Thus, the distribution of temperatures Tiy is determined 

in the process of layer-to-layer motion. With the temperature distribution known, one can evaluate the energy 

emitted by the drop layer into the surrounding space per unit time: 
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Fig. 3. Tempera tu re  dependence  of the rate  of removal of the coolant (tin and 

VM-1 grade vacuum oil) due  to evaporation. T, K. 

E = 4 / 3  nr3pcpunAxAy Eq (T O - Ti] k max) • 

Results of calculations by this method carr ied out for a layer  of t in drops of size d = 100, 200, a n d  300 Mm 

for TO = 1000 K and  o ther  conditions similar to those in [2 ] were compared with results of [2 ]. In the case of the 

model of an optically thin layer  (~ = I) the results virtually coincided (Fig. 2), and  for • > 5 sat isfactory agreement  

was observed. In the method described,  the three-dimensional  na ture  of the layer  is taken into account  (in [2 ], a 

two-dimensional  problem is considered) ,  and more rigorous modeling of scat ter ing of thermal  ene rgy  within the 

layer  is carried out with account for the indicatrix of scattering on spherical particles. Figure 2 presents  results  of 

calculations of tempera ture  profiles for  a layer  with optical thickness r = 5 carr ied out  by the two methods .  

Results of calculations with the number  of pseudoparticles N = 100, 200, 300, and  1000 agree  r a the r  well, 

which makes it possible to recommend,  under  the given conditions, use of N = 100. The  tempera ture  profile a long 

the layer  depth  has a maximum that corresponds to the half- thickness of the layer  and is expla ined by the 

inhomogenei ty  of the radiative heat t ransfer  within the drop layer,  since the optical thickness substant ia l ly  exceeds  

unity. The  number  of cells along x, y, and z was specified as 10 to 20, 5 to 10, and  30 to 50, respectively.  

3. Evaporation of the coolant in the drop layer  during operat ion of the radia tor  is an important  factor  that  

determines  whether  the drop cooler / rad ia tor  can be used under  the conditions of open space. Th e  flow dens i ty  of 

the mat ter  evaporating from unit surface in unit t ime (vapor mass rate) can be de te rmined  in the following manner :  

q F = Gv/ F = ~vUv Kv ,  

where 7v = Psat/(RT) 1''2 is the densi ty  of the vapor formed,  Uv = (8kT)l/2/~rnv is the average thermal  velocity of 

the vapor molecules at the surface, K v is a coefficient that takes into account the fraction of vapor molecules formed,  

Gv is the mass flow rate of the vapor, F is the area of the evaporation surface, T is the tempera ture  of the evaporat ing 

drop surface, k is the Boltzmann constant ,  Psat is the t empera tu re -dependen t  pressure of the sa tura ted  vapor,  and  

m v is the mass of a vapor molecule. 

Taking into account that R --- k /my and K v = 0.25, one can write 

qF = )'vUv Kv = Psat (71) / (2xRT) 1 / 2 

The  expression obta ined is known as the L a n g m u i r - K n u d s e n  formula.  Other ,  more  rigorous approaches  to the 

evaluation of the mass rate of evaporation of the material  that also take into account the condensat ion  ra te  of the 

vapor in the boundary  layer  of the evaporation surface are known. Figure 3 presents  results of calculations of the 

rate of removal of the coolant (tin and VM-1 grade vacuum oil) due to evaporation,  expressed  in kg per m 2 of the 

surface of the material  being evaporated per second. Th e  results indicate that the mass losses of these materials  

allow their  use as the working body of drop coolers / radia tors  within the considered range of the parameters .  

4. A drop  c o o l e r / r a d i a t o r  should opera te  u n d e r  condi t ions  of open space,  i.e., u n d e r  cond i t ions  of 

microgravity and high vacuum. At the same time, one should provide for the process of generat ion of a flow of drops 

moving at a prede termined  velocity and their  collection. A decision on the practical use of a cooler of the type unde r  
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consideration in cooling systems of power installations will be possible only after experiments in space (under the 

actual conditions of the simultaneous action of microgravity and high vacuum and the special features of the 

generation and collection of drops). Without dwelling in detail on how to arrange such an experiment, we should 

note that, in order to provide the necessary accuracy of the experiment and better conditions for visual observation 

of the motion of a single drop, use of the following two drop generators is proposed: 1) the spinneret of the generator 

has one hole, and drops move along a straight line perpendicular to the spinneret surface; 2) the spinneret has 

several holes whose axes lie in a plane perpendicular to the spinneret surface. Under these conditions, one can 

observe the formation and motion of single drops and convergence/divergence of single-drop flows. As regards an 

on-board power installation based on the Brighton cycle in which the temperature  of the coolant in the 

cooler/radiator changes from 400 to 300 K, drops of VM-l-type vacuum oil or silicone liquid can be used as the 

working body [7 I. Spinnerets with a diameter of the holes of 100-200/~m (produced at the Moscow Power 

Engineering Institute, the Scientific-Research Institute of Applied Mechanics and Electrodynamics at the Moscow 

Aviation Institute, and the M. V. Keldysh Research Center) allow obtaining drop diameters of the same order. For 

these initial data, calculations were carried out that made it possible to determine the thickness of a flat drop layer 

within which a temperature variation along the thickness is admissible. In the future, to obtain optimum 

relat ionships among the geometric parameters of the drop coole r / rad ia tor  and  decrease in t empera ture  

inhomogeneities, it is appropriate to consider profiling the layer by changing the drop diameter along its thickness. 

Based on the performed numerical analysis of the parameters of the drop cooler/radiator with account for results 

of laboratory experiments [4, 7] and the possibilities of the technology of fabrication of spinnerets, we can 

recommend the following ranges of variation of the main parameters of the generator: the drop diameter 100 to 200 

/~m, the drop velocity 5 to l0 m/sec, and the distance between the axes of the flows (i.e., between the centers of 

the spinneret channels) 2 to 5 mm. 

The developed model and method for calculation of radiation heat transfer in a drop layer in a three- 

dimensional formulation with account for the scattering indicatrix of the thermal energy within the layer made it 

possible to model transfer processes in drop layers. The main parameters of a drop cooler/radiator were determined 

as a result of the numerical investigation carried out in the present work. 

N O T A T I O N  

Nel, power of the energy installation; r, optical thickness; ry -- yr/D, its current value across the drop layer; 

n, concentration of the drops; r, drop radius; x, y, and z, Cartesian coordinates; Y, D, and L, width, thickness, 

and length of the drop layer; u, velocity of motion of the drops; Ax, Ay, and Az, cell dimensions along the 

corresponding axes; TO, initial temperature of the drops; 2., wavelength; T, temperature of the drops; t, time; Cs, 

Ce, and Ca, scattering, extinction, and absorption cross sections of a single drop. 
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